PUBLIC SWIMMING POOL HALLS
Creating an ideal indoor climate for sportsmen and wellness fans.

Of course ErP-compliant!
The air quality is key
WHY AIR QUALITY IS SO IMPORTANT IN THE SWIMMING POOL HALL

Modern wellness and leisure pools offer guests much more than just an opportunity for swimming. Water attractions, such as slides or white water channels, as well as complete waterscapes for children, offer recreational fun for the whole family. Outside of the pool there are lounge areas to rest and relax. The associated long length of stay of the guest also outside the pool increases the comfort criteria, indoor pool dehumidification systems are used. Modern control systems ensure continuous adjustment of the swimming pool hall temperature and humidity level and the volume of outside air required for dehumidification. The minimum volume of outside air stipulated by VDI 2089 must be complied with.

Besides the comfort needs of the bather, protection of the structure of the buildings is of enormous importance. Well-thought-out air distribution ensures that all parts of the swimming pool hall remain supplied with air. As a result, the formation of moist spots is prevented - ensuring that the dew point of components is not reached. Regardless of the intensity of use and type of swimming pool hall, 24-hour operation of the HVAC device is always required. The selection of a highly efficient dehumidification unit is crucial in order to keep down the operating costs in a swimming pool hall.

The quality of the air decides whether a guests become regular customers or whether they will go to visit the competition. If it is too humid, too cold or too draughty, you will certainly not see them again. Air quality is one of the most important customer loyalty parameters in swimming pool halls.

Surface temperature
Temperature of furnishings, equipment and room-enclosing surfaces. A temperature difference is perceived as uncomfortable by the bather and can lead to falling below the dew point.

The temperature and the air humidity in the swimming pool hall contribute greatly to the well-being of the bather. The absolute water content plays an essential role in the swimming pool hall. Here, a value of 14.3 g of water per kg of air should not be exceeded permanently as long as the absolute water content of the outside air is < 9 g/kg. This value represents the humidity limit of an undressed person.

Evaporation heat requirement
The quantity of water that has evaporated and heat it up to the pool water temperature. The amount of heat required for this evaporation is extracted to a level of 90% from the water and 10% from the air and has to be covered by a customer-provided heating installation or a heat pump integrated into the dehumidification unit. In addition there is the amount of heat which is required to replenish the quantity of water that has evaporated and heat it up to the pool water temperature.

Temperature of furnishings, equipment and room-enclosing surfaces. A temperature difference is perceived as uncomfortable by the bather and can lead to falling below the dew point.

Evaporation heat requirement
The quantity of water that has evaporated and heat it up to the pool water temperature. The amount of heat required for this evaporation is extracted to a level of 90% from the water and 10% from the air and has to be covered by a customer-provided heating installation or a heat pump integrated into the dehumidification unit. In addition there is the amount of heat which is required to replenish the quantity of water that has evaporated and heat it up to the pool water temperature.

Good air ensures a good atmosphere!
The quality of the air decides whether a guests become regular customers or whether they will go to visit the competition. If it is too humid, too cold or too draughty, you will certainly not see them again. Air quality is one of the most important customer loyalty parameters in swimming pool halls.

Save energy costs!
The costs of water, energy and maintenance for the operation of an indoor swimming pool are rising year by year. Any opportunity to make savings has to be used to keep entrance fees stable. The use of highly efficient technology reduces the energy demand significantly.

Protect the fabric of the building!
Poor heat insulation in conjunction with a poorly designed vapour barrier is the most common cause of potential damage due to the temperature falling below the dew point on the inside of the building envelope of a swimming pool hall.

Avoid health risks!
The process of water treatment can lead to a concentration of disinfection by-products in the air of the swimming pool hall. These can be removed from the swimming pool hall by a ventilation system in combination with well-designed air distribution.
Indoor swimming pool dehumidification

REQUIREMENTS OF SPECIFIC TYPES OF INDOOR SWIMMING POOLS

The pool surface area and depth, as well as the type of pool use, are decisive for the evaporation of the water at the pool surface. Another important influencing factor is the partial pressure difference at the saturated vapour pressure of the pool water temperature and the partial pressure of the water vapour of the swimming pool hall air. With these factors, the evaporating water mass flow is designed for bathing and stand-by mode in accordance with VDI 2089 sheet 1. A higher amount of evaporation by existing water attractions is also taken into account.

The determination of the amount of air required during bathing activities based on the parameters of the swimming pool hall and the outside air results in the amount of outside air required for dehumidification and thus the size of the respective dehumidification unit can be selected.

Ventilation in swimming pool halls

BASIC PRINCIPLES OF AIR DISTRIBUTION

The air distribution system in a swimming pool hall performs several tasks. The main task is to discharge the moist return air from the hall and feed it to the dehumidification unit. At the same time, the drier supply air is fed from the bottom up into the swimming pool hall through the duct system, normally via air outlets in the area of the windows. The position of the air inlets and outlets in the hall make an important contribution to the comfort of the bathers. The air inlet, in particular, must be arranged such that the common area is draught-free for bathers. The supply air helps to generate an air flow that ensures air circulation in all areas of the swimming pool hall. The successful performance of this task mainly depends on whether the fans provide a constant quantity of supply and return air at all operating points. The position of the air outlet at the top of the swimming pool hall is selected in such a way that an air-side short circuit between the supply air and return air is ruled out.

Kantrida Rijeka, Croatia

SPORTS POOL

Focus on training, 50-metre lanes. Competition venue with stands. Temperature: 26/28°C (water/air) Roof can be opened

Lippebad Lunen, Germany

LEISURE POOL

Combination of sport and leisure, 25-metre lanes. Temperature: 28/30°C (water/air) First public passive house swimming pool

Lasko Thermal Baths, Slovenia

ADVENTURE POOL

Strong orientation on leisure activities, many water attractions, slides, etc. Temperature: 28/30°C (water/air) Connection to the outdoor pool

Terme di merano, Italy

SALTWATER POOL

Brine water promotes health. Temperature: 30/32°C (water/air) Very corrosive air

Hotel Bell Rock in Rust, Germany

HOTEL POOL

Wellness and relaxation. Temperature: 28/30°C (water/air) Wellness oasis in the Europa Park in Rust

Hotel Edelweiss in Wagrain, Austria

HEALTH SPA

Swimming pool, e.g. for health treatments. Temperature: 28/30°C (water/air) First hotel passive house swimming pool

Example of an optimal air distribution system based on a recuperative system. Introduction of the air on the window facades, extraction at the top. The amount of supply and return air is constant.

Utility room
Ecodesign Directive

ERP ALSO APPLIES TO VENTILATION UNITS IN SWIMMING POOL HALLS

European Directive 2009/125/EC (ErP or “Ecodesign Directive”) provides a European legal guideline for the establishment of requirements for the environmentally friendly design of energy-related products and came into effect in October 2009. The objective of this directive is to provide minimum requirements regarding the energy efficiency of various product groups which fall under the category of energy-related products and therefore drive inefficient products from the Single European Market in order to achieve the European climate protection targets. The requirements for the ecodesign of ventilation plants were established in EU Regulation 1253/2014, which came into force in 2014. Besides the basic requirements for the design of the ventilation unit, efficiency criteria are being formulated in two steps for 1 January 2016 and - with increased requirements - 1 January 2018. Particular focus is on the efficiency of the heat recovery system according to the rules of EN 308. These rules describe the test method in order to determine the efficiency of all heat exchanger systems and ensure cross-system comparability.

Another decisive factor for compliance with the requirements of the Ecodesign Directive is the power consumption of the fans. If this exceeds a reference value, the device may not be placed on the market within the EU.

The objective of the ecodesign requirements for ventilation systems is to increase the primary energy savings of this product group to 60% before 2025 relative to 2010.

IMPORTANT STANDARDS AND DIRECTIVES

BUILDINGS

Energy Conservation Act (EnEG) Law on saving energy in buildings

Renewable Energies Heat Act (EEWärmeG) Law for the promotion of renewable energies in the heat sector

Energy-saving Regulation (EnEV) Regulation on energy-saving thermal insulation and energy-saving installation engineering for buildings

DIN V 18599 Calculation of the energy needs, delivered energy and primary energy for heating, cooling, ventilation, domestic hot water and lighting of buildings

KOK Directives Recognised basis and benchmark for the planning and construction of public swimming pool halls

Regulation on the Construction and Operation of Places of Public Assembly (VStättVO) Ordinance on the construction and operation of public assembly places (among other things open-air swimming pools with fencing, swimming pool halls with a volume > 200 people)

VDI 2050, Sheet 1-5 Planning and Holistic View of Buildings and Technical Building Equipment

HVAC

Machinery Directive 2006/42/EC

Ecodesign Directive 2009/125/EC

Pressure Equipment Directive 97/23/EC

EN 378 Safety and Environmental Requirements for Refrigeration Systems and Heat Pumps

DIN EN 13779 Mechanical Ventilation and Air-Conditioning of Non-Residential Buildings

DIN EN 15251 Input Parameters for the Room Climate for the Design and Assessment of the Energy Efficiency of Buildings

DIN EN 12599 Testing and Measuring methods for the Operation of Installed HVAC Plants

DIN EN 12599 Building Services in Swimming Baths; Sheet 1 = Indoor pools; Sheet 2 = Efficient Use of Energy and Water

LüAr - Ventilation Plant Directive Directive on the technical fire safety requirements for ventilation systems

IMPORTANT LABELS

ECODESIGN 2016 + 2018

Euronvent Certification Programmes for Cooling and Air-Conditioning Products

HVAC A+, A, B Certification of Efficiency and Quality of an HVAC System

TA-Lärm Technical Instructions on Noise Abatement

IMPORTANT LABELS

German Sustainable Building Council - Leaflet 60.07 Maintenance of Technical Installations in Swimming Pools, leaflet of the German Society for Bathing

German Study Group of Public and Municipal Administration for Machines and Electrical Facilities in Buildings - HVAC Plant Construction Directive Scope of application: public buildings

DIN EN 13053 Rating and performance for air handling units, components and sections

DIN EN 1886 Air handling units - Mechanical Performance

VDI 3803 Central Air Conditioning Systems – Structural and technical principles (VDI ventilation code of practice)

DIN EN 1751 (January 1999) Air terminal devices

VDI 6022 Hygiene Requirements for ventilation and air-conditioning systems and units

HVAC Directive 01 General Requirements for HVAC Systems, issued by the German Association of Ventilation and Air-Conditioning Equipment Manufacturers (Registered Association)

RLT-TÜV-01 Test Guideline of TÜV-Süd for Energy Efficiency
Design Parameters

FOR PUBLIC SWIMMING POOL HALLS

Important Design Parameters
- Pool surface, pool depth
- Water temperature
- Air temperature and humidity
- Type and number of attractions
- Operating hours
- Type of use

Design
- Provide for multiple use of the air
- Operate wet areas in low pressure compared to dry areas
- Air distribution system must ensure air exchange in the swimming pool hall

Planning
- Early examination of building statics and possible access openings
- When setting up the device and planning the channels, take the minimum space for maintenance work into account
- Exhaust air channel: Air lines for the dehumidification unit as short as possible
- Cleaning opportunity and discharge for any penetrated water
- Inspection opening at chamber or channel
- Exhaust air passage: Ensuring the air distribution system in the event of fire automatically
- According to VDI 2089, weight-loaded overpressure relief valves must be provided in order to protect the duct system.
- Adjustment depending on the room temperature and room humidity, or alternatively depending on the room temperature and pool temperature
- Only exceed absolute humidity in the hall of 143 g/kg if DA humidity exceeds +g g/kg
- Reduction of the minimum external volume flow from 30% to 15% is permissible if the pool water trihalomethanes are permanently <0.020 mg/l

Volume flows
- Entrance area: 5 m³/h/m²
- Single changing rooms: 15 m³/h/m²
- Group changing rooms: 20 m³/h/m²
- Supervisory rooms: 25 m³/h/m²
- Fist aid rooms: 25 m³/h/m²
- WCs (per seat): 100 m³/h
- Showers (per shower): 220 m³/h

Surface temperatures
- Surface type
 - Surfaces of seat and lying areas: 30⁰C - 39⁰C
 - Surfaces of the floor in the barefoot area: 22⁰C - 30⁰C
- Heating surfaces in the barefoot area without protection against contact: <50⁰C
- Heating surfaces in the barefoot area with protection against contact: any

Pool water temperature
- Swimming pools: 28⁰C
- Diving pools: 28⁰C

Attractions:
- Overview of the parameters of the relative field amplification according to VDI 2089 Sheet 1.

Attractions Technical Data

<table>
<thead>
<tr>
<th>Attraction</th>
<th>No. of nozzles per system</th>
<th>Flow rate water</th>
<th>Flow rate water</th>
<th>Rel. field amplification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet stream canal</td>
<td>6 to 8</td>
<td>80 to 100</td>
<td>-</td>
<td>30</td>
</tr>
<tr>
<td>Water mushroom</td>
<td>-</td>
<td>40 to 50</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td>Counter-current system</td>
<td>1 to 2</td>
<td>20 to 50</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>Neck shower</td>
<td>-</td>
<td>30 to 60</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Floor jet</td>
<td>-</td>
<td>50 to 100</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Bubble geyser</td>
<td>-</td>
<td>-</td>
<td>200 to 300</td>
<td>3</td>
</tr>
<tr>
<td>Geyser</td>
<td>-</td>
<td>50 to 70</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Children’s slide</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Massage area</td>
<td>-</td>
<td>10 to 20</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td>Recess for relaxing</td>
<td>-</td>
<td>40 to 50</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Sitting area</td>
<td>-</td>
<td>40 to 50</td>
<td>-</td>
<td>2</td>
</tr>
</tbody>
</table>

For further information and parameters, see VDI 2089 Sheets 1 and 2.
Make the Right Choice!
SYSTEM AND COMPONENT SELECTION

EQUIPMENT SELECTION

Recuperative heat recovery systems transmit the sensitive energy stored in the swimming pool hall return air to the outside air. Substances contained in the air are not transmitted from the return air to the outside or supply air. With low OA temperatures in which water condenses, the return air is further cooled with the help of the evaporator after the recuperator in outside air mode. The sensitive and latent energy obtained is transferred to the supply air. The electrical capacity of the compressor is transferred to the supply air. This moisture requirement is covered and the heating system can be sized smaller. This solution is ideal for energetically refurbished swimming pool halls.

Recuperative: unit with cross-flow heat exchanger and heat pump
Combination of recuperator and down-stream heat pump. Here, the exhaust air is further cooled with the help of the evaporator after the recuperator. The sensitive and latent energy obtained is transferred to the supply air. The electrical capacity of the compressor is transferred to the supply air. This moisture requirement is covered and the heating system can be sized smaller. This solution is ideal for energetically refurbished swimming pool halls.

Regenerative: Device with counter-flow heat exchanger; Heat wheels
For regenerative heat recovery via a rotary heat exchanger, substances from the swimming pool hall air can be transferred in addition to the sensitive heat. Moisture recovery results due to the design if the dew point is not reached, since the condensate produced by a heat wheel gets into the outside air flow with the help of the rotation. This moisture recovery increases the absolute water content in the supply air and has to be compensated for with a greater quantity of outside air. The significantly higher fan input power results in higher energy requirements in addition to the driving power of the heat wheel.

COMPONENTS

Pool water condenser
A pool water condenser can emit heat to the pool water during the transitional period.

Energetic examination of recuperative and regenerative heat recovery

How it works...

COUNTER-CURRENT HEAT EXCHANGER VS. HEAT PUMP

Device with counter-flow heat exchangers, without heat pump
Stand-by mode
No requirement for temperature or dehumidification, device operates solely in recirculation mode. The air is air circulation with reduced performance of the fans.

Recirc Air Heating Operation
Heating in accordance with requirements for each heating coil. The OA and EA dampers are closed.

Dehumidification at the device with counter-flow heat exchanger
Dehumidification of the swimming pool hall air through demand-based mixing ofextérieur air (in bathing mode in accordance with VDI 2089 minimum required amount of outdoor air) for the recirculated air flow. If required: reheating of the supply air.

Outside Air Exhaust Air Mode
In the case of rising OA humidity, the recirc air damper is continuously closed as required. During high OA humidity, the flap closes completely, the device operates in outside air-exhaust air mode.

Defrost Mode
Recuperative heat exchangers tend to ice up if the OA temperatures are low. This is prevented by opening the return air-exhaust air bypass.

Heat exchanger bypass
The proportion of the air guided through the heat exchanger and the bypass can be regulated up to free ventilation.
Quality Factors

YOU CAN RECOGNISE A GOOD HVAC DEVICE BY THESE PARAMETERS.

Control and regulation
Control and regulation is part of any energy-efficient device. The device can be connected to BACnet and other systems and can be operated and analysed by remote control and remote monitoring (vicomo).

Unit structure
The unit design ensures the durability of a device, as well as simple, secure integration. Menerga units are based on a long-lasting, robust frame structure.

Thermal insulation
A good HVAC device is based on a comprehensive thermal insulation concept. It has a solid construction with sufficient rigidity in conjunction with a unit cover designed as sandwich panels. The thermal insulation shell reduces heat losses and hence energy consumption. Thermal isolation is ensured by design. This means best possible avoidance of thermal bridges, and no condensation on the outside of the unit. This is very important when used in the swimming pool hall area.

Cleaning and maintenance
A unit design according to VDI 6022 ensures the high hygiene standard of HVAC units. This includes the possibility of thorough cleaning of all components, in particular the heat exchanger. This has to be made possible already at the design stage.

Highest efficiency confirmed
Menerga is a member of the German AHU Manufacturers Association and certified by them and by EUROVENT. The basis for this is measurements and tests which have been created by independent institutes such as TÜV or DMT. With these we ensure design and production according to standard market quality and efficiency criteria.

Extra corrosion design
If the swimming pool hall air is particularly corrosive, for instance in the case of brine baths, units have to be provided with increased corrosion protection.

All components are complete with corrosion-resistant coatings or polypropylene panels. This ensures a long lifespan.

Polypropylene recuperator
Polypropylene (PP) is a thermoplastic material which is ideal for use in air-conditioning and ventilation technology. It is non-toxic and neutral to ground water. Polypropylene possesses a high level of resistance to many types of acids, alkalis, salts and solvents and is resistant to corrosion and to ageing. The material cannot be metabolised microbiologically and provides no basis for the growth of germs or lime scale and algae deposits. During production, significantly fewer CO₂ emissions are produced compared to aluminium. Furthermore, the weight is five times less.

Measured values according to EN 1886

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casing stability</td>
<td>D1 (M)</td>
<td></td>
</tr>
<tr>
<td>Air tightness -400 Pa</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>Air tightness +700 Pa</td>
<td>L1</td>
<td></td>
</tr>
<tr>
<td>Filter bypass leakage F9 (M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat transfer T2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal bridge factor TBT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COMPARISON OF THREE SOLUTIONS FOR DEHUMIDIFICATION

Design conditions
- Pool size: 25 x 12.5 m
- Pool water temperature: 28 °C
- Condition of the air in the swimming pool hall: 30 °C/54% r.h.
- Electricity price: EUR 0.165/kWh
- Heating price: EUR 0.05/kWh
- Air quantity: 15,800 m³/h
- Calculation according to VDI 2089.

Specification of all costs in euros

Comparison of Operating Costs
- Swimming pool mode: 8 a.m. - 9 p.m.
- Condition of the air in the swimming pool hall: 30 °C/54% r.h.
- Heating price: EUR 0.05/kWh
- Electricity price: EUR 0.165/kWh
- Pool water temperature: 28 °C
- Pool size: 25 x 12.5 m

Requirement: coverage of ventilation and transmission heat requirements

<table>
<thead>
<tr>
<th>Year</th>
<th>Investment costs</th>
<th>Operating costs</th>
<th>Maintenance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Unit with counter-flow heat exchanger + heat pump</td>
<td>EUR 25,000</td>
<td>EUR 10,000</td>
</tr>
<tr>
<td>2nd</td>
<td>Unit with cross-flow heat exchanger and heat pump</td>
<td>EUR 25,000</td>
<td>EUR 12,500</td>
</tr>
<tr>
<td>3rd</td>
<td>Unit with rotary heat exchanger</td>
<td>EUR 25,000</td>
<td>EUR 15,000</td>
</tr>
<tr>
<td>4th</td>
<td>Unit with rotary heat exchanger</td>
<td>EUR 25,000</td>
<td>EUR 17,500</td>
</tr>
<tr>
<td>5th</td>
<td>Unit with counter-flow heat exchanger + heat pump</td>
<td>EUR 25,000</td>
<td>EUR 20,000</td>
</tr>
<tr>
<td>6th</td>
<td>Unit with cross-flow heat exchanger and heat pump</td>
<td>EUR 25,000</td>
<td>EUR 22,500</td>
</tr>
<tr>
<td>7th</td>
<td>Unit with rotary heat exchanger</td>
<td>EUR 25,000</td>
<td>EUR 25,000</td>
</tr>
<tr>
<td>8th</td>
<td>Unit with rotary heat exchanger</td>
<td>EUR 25,000</td>
<td>EUR 27,500</td>
</tr>
<tr>
<td>9th</td>
<td>Unit with counter-flow heat exchanger + heat pump</td>
<td>EUR 25,000</td>
<td>EUR 30,000</td>
</tr>
<tr>
<td>10th</td>
<td>Unit with cross-flow heat exchanger and heat pump</td>
<td>EUR 25,000</td>
<td>EUR 32,500</td>
</tr>
<tr>
<td>11th</td>
<td>Unit with rotary heat exchanger</td>
<td>EUR 25,000</td>
<td>EUR 35,000</td>
</tr>
<tr>
<td>12th</td>
<td>Unit with rotary heat exchanger</td>
<td>EUR 25,000</td>
<td>EUR 37,500</td>
</tr>
<tr>
<td>13th</td>
<td>Unit with counter-flow heat exchanger</td>
<td>EUR 25,000</td>
<td>EUR 40,000</td>
</tr>
</tbody>
</table>

Accumulated investment, operating and maintenance costs, Period: 15 years

SYSTEM COMPARISON: SWIMMING POOL HALL WITH EXCELLENT THERMAL INSULATION

- Requirement: coverage of ventilation heat requirements

SYSTEM COMPARISON: SWIMMING POOL HALL WITH POOR THERMAL INSULATION

- Requirement: coverage of ventilation and transmission heat requirements

Photo: National Zwemcentrum de Tongelreep, Netherlands
Not only the waste water in the showers of the swimming pool hall, but also the fresh water in the swimming pool to be supplied per visitor offers great energy potential for swimming pool halls.

Per visitor, 30 litres of fresh water has to be supplied during standard swimming pool operation. This means that 30 litres of pool water brought up to the right temperature must be exchanged for unheated fresh water. Hence, heat recovery from waste water is a good solution for older swimming pool halls, including refurbishment cases. The crucial point for efficient operation is a continuous accumulation of waste water, for instance by using a tank.

How it works:

Heat recovery from waste water with fully automatic recuperator cleaning.

The combination of a recuperative counter-flow coaxial recuperator with a heat pump provides the highest possible heat recovery. The warm waste water flows through the recuperator and then through the evaporator of the heat pump. In counterflow and physically separated, the same volume of fresh water first passes through the recuperator, and then through the condenser of the heat pump.

Consistent pipe cross-sections ensure that flow rates are constant. If the waste water is organically contaminated, bacteria growth and organic sludge formation will possibly adhere to the exchange surfaces. These are removed by the fully automatic cleaning. At regular intervals, cleaning pellets are carried along the waste water paths.

Comparison of operating costs for fresh water heating with waste water heat recovery in the case of refurbishment

Technical data of a swimming pool hall, 1,500 visitors per day

- Number of swimmers/day: 1,500
- Fresh water quantity/day: 45 m³
- Electricity price: EUR 0.165/kWh
- Heating price (gas): EUR 0.05/kWh
- Fresh water temperature: 10 °C
- Hot water temperature: 35 °C
- Fresh water/person under DIN 19643-1: 30 litres
- Daily operating costs for the necessary fresh water heating
 1. with gas: €65.36/day
 2. with heat recovery: €18.87/day
- Savings: €46.49/day
- Investment costs
 - Heat recovery device: €44,000
 - Installation: €20,000
- Amortisation of the conversion: 3.7 years
Energy Costs through Refurbishment

EVEN PARTIAL REFURBISHMENT CAN PROVIDE SAVINGS OF 30%!

Our device technology is designed for permanent energy-efficient operation. Many devices which we installed during the first few years of the company still are or would be in running order today. Nevertheless, it pays to check a complete installed system regularly with respect to optimisation opportunities.

A complex system such as a dehumidification plant should be checked every five to ten years. The reason for this is not that there may be possible faults in terms of function or technology, but rather the fast pace of progress and the increasing air-conditioning requirements. Something that was impossible five years ago is state-of-the-art today. And may save you a good deal of money. Have changes turned up in the overall structure? Has a CHP plant been incorporated whose waste heat can be used for heating the swimming pool hall? We always factor the “big picture” into our assessment!

There is also a good deal that can be optimised with respect to regulation of the plant. From 1994 to 2013 each Menerga unit came with an A/B-DDC control system. Since 2009, A-DDC has only been used as a replacement, as has B-DDC since 2012. We modify old devices continuously and you benefit from the much improved technological status, e.g. communication via BacNet, visualised remote access, long-term data recording, lower energy requirements, connection of other components which can also be managed and much more. This pays off in many ways.

The largest amount of energy expenditure in a ventilation unit is caused by the fan motors. Currently, we are replacing V-belts and solvent fan units with EC fans in our old devices throughout Germany. This alone saves up to 30% energy.

Contact us today!

A modern public swimming pool consists not only of the swimming pool hall, but also of many other areas which place various requirements on the ventilation and air-conditioning. The areas have to be considered separately from one another to a large extent.

Entrance area
The business card of a swimming pool hall. If it smells of chloroform here and is stiflingly hot, it will make a bad impression. Temperature recommendation at least 20 °C.

Toilets, showers
In these areas, the bather is lightly dressed. The temperature in the shower and sanitary rooms should be between 26 and 34 °C.

Changing rooms
In the changing rooms the visitor is either lightly dressed or fully dressed. The ideal air temperature is between 22 and 26 °C.

Wellness complex
In the wellness complex, the people are mostly lightly dressed, but not wet. Depending on the form of use, the air temperatures are usually between 26° and 30°C.

Restaurant
According to the German building regulations for restaurants, the room air temperature in a restaurant is supposed to be between 19 and 26 °C.
OUR FIELDS OF APPLICATION:

- Data Center
- Industry
- Precision
- Hygiene
- Pool
- Service